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Abstract

Using graph theory as a conceptual framework, chemical graph theory investigates chemical
structures and phenomena. Chemical graphs, with edges and vertices representing bonds and
atoms, respectively, are used in chemical graph theory to represent molecular structures. The
investigation of various pharmacological substances and complex molecular structures is made
easier by the application of chemical graph theory. The resolvability parameter, a measure de-
rived from graph theory, is a fundamental idea in this discipline. It requires every vertex in
a structure to have a unique representation through chosen vertices, which are referred to as a
metric basis, locating set, or resolving set in various scientific contexts. A key factor in describing
the structural characteristics of chemical graphs is the metric dimension, which is the smallest
number of vertices in the resolving set. In this work, we looked at the vertex and edge met-
ric dimensions of the drug structures for the treatment of breast cancer, including Toremifene,
Ribociclib, Tucatinib, Olaparib, and Abemaciclib and also we estimated the dimensions of the
vertex and edge metrics while treating various drug structures as chemical graphs. This can
make it easier to comprehend the chemical structure of different anti-breast cancer medications
and create formulations more effectively.

Keywords: breast cancer drugmolecular structure; resolving set; metric dimension; edgemetric
dimension.
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1 Introduction

Metric dimensions are a crucial characteristic for uniquely identifying vertices in molecular
networks, and are the subject of current study in chemical graph theory. In order to examine
complicated molecular structures like as the "M-polynomial of zigzag edge coronoid fused by
starphene" molecule, studies investigate metric dimension, and mixed metric dimension [4]. In
chemical graph theory, hollow coronoid structures are significant molecular graphs. In order to
improve structural identification and stability analysis, this work examines their metric and fault-
tolerant metric dimensions [11].

In this study [24], a unique class of molecular graphs called zigzag edge coronoid fused with
starphene is studied in terms of its metric and edge metric dimension. The study investigates
their structural characteristics as well as their uses in material science and nanotechnology. Crys-
tal structures, particularly carbon’s cubic forms such as diamond, are important in materials re-
search. It investigates themixedmetric dimension, a graph theory term, to assess the cubic carbon
structure’s distinct features and prospective uses in material design [27] . Whereas fault-tolerant
metric dimension takes resilience against errors in vertices or edges into account, metric dimen-
sion establishes the minimal number of vertices required for unique identification inside a graph.
By finding groups of vertices that recognize various components in the graph, mixed metric di-
mension expands on these ideas and offers a greater comprehension of chemical topologies and
networks [12].

Chemical graph theory also makes use of the edge version of metric dimension, as demon-
strated by the study of circulant graphs with constant edge versions of metric dimension. Fur-
thermore, linked graphs are subjected to the edge version of metric dimension, highlighting the
significance of edge distances in chemical models [13]. To further clarify on their asymptotic be-
havior, new planar networks have been developed, such as rotationally heptagonal symmetrical
graphs with up to four cords in the heptagonal structure, and their local fractional metric di-
mensions and upper-bound sequences analyzed [3]. With applications in chemical graph theory
[19], the research investigates the zero divisor graph of commutative rings with an emphasis on
graph energy and topological descriptors such asWiener index andZagreb indices. With algebraic
graph representations, these descriptors aid in modeling molecular characteristics. Building on
the work of [18], it emphasizes the interaction between algebraic structures and molecular graph
theory. This study explores reverse topological indices to evaluate the chemical structures of bistar
networks and corona products in the context of cheminformatics [5]. In this work, distance-based
topological indices for zero divisor graphs of commutative rings are calculated, a MATLAB-based
tool for their computation is presented, and their uses in algebraic structures and chemical graph
theory are highlighted [9]. It offers resources for comprehending molecular characteristics and
forecasting chemical reactions.

In order to help in uniquely identifying graph vertices based on distances, the study looks
at the metric dimension of line graphs generated from chemical compounds [17]. This parame-
ter is used to examine chemical structures such as fullerenes and hydrocarbons. Understanding
structure-property correlations and differentiating molecular isomers are two uses for the metric
dimension. The paper focuses on polycyclic aromatic hydrocarbon (PAH) networks’ mixed met-
ric dimension, which entails uniquely identifying both edges and vertices [25]. It gives insights
into the structural characterisation and topological features of PAHs. The edge-based metric di-
mension of graphs encoding coffee chemicals is examined in this work, with an emphasis on em-
ploying resolving sets to uniquely identify edges [1]. It emphasizes uses for examining the topo-
logical uniqueness and structural characteristics of molecular structures associated with coffee.
The study explores partition resolvability in graphs that depict the chemical structures of breast
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cancer, with an emphasis on segmenting the graph into subsets that may be used to uniquely iden-
tify vertices [7]. This method helps in medication development by examining the topological and
structural characteristics of molecules linked to breast cancer. These diverse study areas highlight
how chemical graph theory is developing and how it is used in many scientific fields.

Slater [28] launched the study of standardmetric dimension byposing the challenge of uniquely
identifying the position of an intruder or thief in a network and locating sets as metric generators.
Haray and Melter established the idea of metric dimension when they referred to the metric gen-
erators as resolving sets of a graph [6]. Subsequently, the notion of metric dimension garnered
significant attention from scholars, leading to multiple publications on the subject. Examples of
these studies include those on robot navigation and applications in chemistry. In addition, the
following recent articles are included for the convenience of the reader [8, 26].

A few wheel graph subdivisions’ metric and edge metric dimensions are calculated and ex-
plained [20]. This study aims to calculate a subset of wheel graphs’ edge metric dimensions. We
precisely calculate and compare the dimensions of the metric and edge metric. A graph produced
by going through the spoke and cycle parts of the wheel graph. According to the results of the
computations, the metric dimension issue is NP-complete [21].

Pharmaceutical chemistry, imageprocessing, decoding complex games, robotwandering, com-
binatorial optimization, and other theoretical problems all involve or are at least connected tomet-
ric dimensions. Navigation in a graph framework uses landmark-based distance sensing to esti-
mate a robot’s position. This work focuses on discovering the smallest landmark set known as the
metric basis and investigates themetric dimension and its computational features [10]. This study
studies metric generators, which use distances to uniquely identify places in a metric space, and
focuses on their importance in combinatorial optimization and graph theory [22]. Applications
include estimating metric dimension, solving linked join issues, and dealing with associated com-
putational complexity. Additionally, Nadeem et al. [15] discovered uses for metric dimensions in
the polymer sector. Likewise, similar advantageous characteristics for electrical equipment may
be found in [2].

In this study, we assume that atoms and the chemical bonds between themare nodes and edges,
respectively, and we treat a molecular graph as a transition from a chemical structure to a graph.
The findings hold great promise in the fields of pharmacology, bioinformatics, and drug research,
where knowledge ofmolecular relationships is essential for forecasting the safety and effectiveness
of medications. Additionally, the study offers a foundation for creating computational tools that
simulate and model molecular interactions, which may advance the creation of specific breast
cancer therapies.

In a graph, breast cancer medications can be shown as nodes, with edges denoting commonali-
ties in structural, chemical, or functional characteristics. Drugs with similar mechanisms of action
may be categorized, unique compounds can be found, and redundancy in drug libraries can be
reduced by evaluating each drug’s uniqueness using resolvability metrics in metric dimensions.
Furthermore, comprehending therapeutic success depends heavily on IC50 values, which quantify
pharmacological efficacy. Predictive models can be improved by identifying distinct pharmaco-
logical properties by combining IC50 values and chemical structure data via metric resolvability.
Through the analysis of their locations within a metric-based "drug space," this method facilitates
the effective identification of new medicinal substances.

Insights into Breast Cancer Drugs: The study investigates the relationship between the struc-
tural efficiency and originality of breast cancer medications and metric and edge metric dimen-
sions. Drug-receptor interactions, biological activity prediction, and isomer separation are all

1081



E. Pandeeswari and J. Ravi Sankar Malaysian J. Math. Sci. 19(3): 1079–1110(2025) 1079 - 1110

aided by molecular descriptors derived from resolvability measurements. The results show im-
portant structural elements affecting pharmacological characteristics. The development of more
potent treatments for breast cancer may benefit from these revelations. The methods and mathe-
matical terminology used in our primary research project are outlined below in Figure 1.

Figure 1: Flow chart for the computing vertex and edge metric dimension of a chemical structure.

2 Fundamental Concepts and Notions

Definition 2.1. [14] Suppose Gs(V (Gs), E(Gs)) is an undirected graph of a chemical structure, where
V (Gs) is the set of verticesGs andE(Gs) is the set of edges between these verticesGs. The distance between
two vertices ξ1, ξ2 ∈ V (Gs), written as d(ξ1, ξ2), is the minimum number of edges in a path between ξ1
and ξ2.

Definition 2.2. [14] Suppose R ⊂ V (Gs) is a subset of the vertex set, defined as R = {ξ1, ξ2, . . . , ξs},
and let ξ ∈ V (Gs). The identification r(ξ | R) of a vertex ξ with respect to R is an s-ordered tuple of
distances (d(ξ, ξ1), d(ξ, ξ2), . . . , d(ξ, ξs)). If each vertex from V (Gs) has a unique identification according
to the ordered subset R, then this subset is called the metric basis of the graph Gs. The minimum number
of elements in the subset R is called the metric dimension of Gs. Here, r(ξ | R) represents the position of
a vertex ξ with respect to the resolving set R and for the vertex resolving set is indicated by the symbol Rξ,
the symbol Rξ denotes the vertex resolving set; the metric dimension of a graphGs is denoted by the symbol
ξdimGs.

Definition 2.3. [23, 16] A vertex ξ ∈ V (Gs) and an edge e = ξ1ξ2 ∈ E(Gs), the distance between ξ and e
is defined as d(e, ξ) = min{d(ξ1, ξ), d(ξ2, ξ)}. A vertex ξ ∈ V (G) distinguishes two edges e1, e2 ∈ E(G),
if d(ξ, e1) ̸= d(ξ, e2). A subsetRe havingminimum vertices from a connected graphGs is an edge resolving
set forGs, if any two distinct edges ofGs are distinguished by some vertex ofRe. The minimum cardinality
of an edge resolving set for Gs is called the edge metric dimension. Here, the edge resolving set is denoted
by the symbol Re; the edge metric dimension is denoted by the symbol edimGs.
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3 Main Results

3.1 Edge metric dimensions of resolving sets for molecular graphs

Toremifene is a first generation nonsteroidal selective estrogen receptormodulator used to treat
certain breast cancers. Toremifene is a selective estrogen receptor modulator (SERM) and a non-
steroidal antiestrogen used to treat estrogen receptor positive breast cancer.

V (Gs(Te)) =
{
ξj | 1 ≤ j ≤ 29

}
,

E(Gs(Te)) =
{
ξjξj+1 | j = 1, 2, . . . , 9, 11, . . . , 16, 18, 19, . . . , 22, 24, 25, 26, 27

}
∪
{
ξ5ξ10, ξ4ξ11, ξ11ξ18, ξ18ξ23, ξ17ξ12, ξ21ξ24, ξ27ξ29

}
.

Theorem 3.1. LetGs(Te) be a graph representing Toremifene. Then, the edge metric dimension ofGs(Te)
is 4.

Proof. Consider the connected graphGs(Te), which has an edge resolving setRe = {ξ9, ξ14, ξ20, ξ22},
as illustrated in Figure 2. The edge metric dimension of Gs(Te) is 4.

Figure 2: Molecular graph of Toremifene.

To demonstrate this, we selected an edge resolving set with a cardinality of 4 and defined it as
follows,

r(ξjξj+1 | Re) =
{
d(ξj , ξ9), d(ξj , ξ14), d(ξj , ξ20), d(ξj , ξ22)

}
.
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To validate this statement, we present the following representations for further discussion,

r(ξjξj+1 | Re) =



(3(2)− j, 7− j, 4(2)− j, 7− j), if j = 1, 2, 3,

(3(2)− j, 4(2)− j, 4(2)− j, 4(2)− j), if j = 4,

(7− j, 5(2)− j, 5(2)− j, 5(2)− j), if j = 5,

(4(2)− j, 4(3)− j, 4(3)− j, 4(3)− j), if j = 6,

(8− j, 14− j, 14− j, 14− j), if j = 7,

(8− j, 14− j, 16− j, 14− j), if j = 8,

(9− j, 15− j, 16− j, 15− j), if j = 9,

(15− j, j − 9, 14− j, 14− j), if j = 11,

(17− j, 13− j, 16− j, 16− j), if j = 12,

(19− j, 13− j, 18− j, 18− j), if j = 13,

(21− j, 14− j, 20− j, 20− j), if j = 14,

(22− j, 16− j, 22− j, 21− j), if j = 15,

(22− j, 18− j, 22− j, 21− j), if j = 16,

(23− j, 22− j, 20− j, 20− j), if j = 18,

(25− j, 24− j, 20− j, 21− j), if j = 19,

(27− j, 26− j, 20− j, 21− j), if j = 20,

(29− j, 27− j, 21− j, 21− j), if j = 21,

(28− j, 27− j, 23− j, 22− j), if j = 22,

(33− j, 32− j, 25− j, 26− j), if j = 24,

(35− j, 34− j, 27− j, 28− j), if j = 25,

(37− j, 36− j, 29− j, 30− j), if j = 26,

(39− j, 38− j, 31− j, 32− j), if j = 27.

The representations for additional edges are as follows,

r(ξ5ξ10 | Re) = (1, 5, 5, 5),

r(ξ4ξ11 | Re) = (3, 3, 3, 3),

r(ξ11ξ18 | Re) = (4, 3, 2, 2),

r(ξ12ξ17 | Re) = (5, 2, 2, 4),

r(ξ18ξ23 | Re) = (5, 4, 2, 1),

r(ξ21ξ24 | Re) = (8, 7, 1, 1),

r(ξ27ξ29 | Re) = (12, 11, 5, 5).

It is evident from each edge’s unique representation with Re that Re is an edge resolving set of
Gs(Te), which implies,

edim(Gs(Te)) ≤ 4. (1)

Now, assume edim(Gs(Te)) ≥ 4. On the contrary, suppose edim(Gs(Te)) = 3. We consider,

Case 1: Let the path ξ1 → ξ2 → ξ3 → ξ4 → ξ5, ξ12 → ξ11 → ξ18, ξ21 → ξ24 be a bridge. Here,
ξ5ξ6 and ξ5ξ10 are edges fromH1, while ξ12ξ13 and ξ12ξ17 are edges fromH2, ξ18ξ19 and
ξ18ξ23 are edges from H3, showing uniform representation. The same representation
will appear at the following edges if we choose an edge resolving set from R′

e ⊂ ξ(H1)
with a cardinality of three,

r(ξ5ξ6 | R′
e) = r(ξ5ξ10 | R′

e).

As with Case 1, the resolving set fails to distinguish between these edges.
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Case 2: The same representation will appear at the following edges if we choose an edge re-
solving set from R′

e ⊂ ξ(H2)with a cardinality of three,

r(ξ12ξ13 | R′
e) = r(ξ12ξ17 | R′

e).

The same representation will appear at the following edges if we choose an edge re-
solving set from R′

e ⊂ ξ(H3)with a cardinality of three,

r(ξ18ξ19 | R′
e) = r(ξ18ξ23 | R′

e).

Case 3: Even when considering an edge resolving set R′
e of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ5ξ6 | R′
e) = r(ξ5ξ10 | R′

e),

r(ξ12ξ13 | R′
e) = r(ξ12ξ17 | R′

e),

r(ξ18ξ19 | R′
e) = r(ξ18ξ23 | R′

e).

These equalities demonstrate that no edge resolving set of cardinality three can resolve all edges
in Gs(Te), as shown in Figure 3. Therefore,

edim(Gs(Te)) ≥ 4. (2)

We conclude, based on inequalities (1) and (2), that,

edim(Gs(Te)) = 4.

Figure 3: Partitioning of the Toremifene structure for the contrary theorem proof.

This completes the proof.

Ribociclib, a medication used in treatment, has shown great promise in treating advanced
metastatic breast cancer in younger women. In addition, physicians have reported that, when
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compared to standard chemotherapy, women with advanced breast cancer treated with ribociclib
are able to prolong their life expectancy.

One kind of growth inhibitor for cancer is ribociclib. It specifically targets two proteins in
breast cancer cells: cyclin reliant kinase 4 and cyclin dependant 6. Two proteins, CDK 4 and CDK
6, promote the growth and division of cancer cells. These proteins are blocked by ribofacilib,

V (Gs(Rb)) =
{
ξj | 1 ≤ j ≤ 32

}
,

E(Gs(Rb)) =
{
ξjξj+1 | j = 1, 2, . . . , 11, 13, . . . , 21, 23, 24, 26, 29, 30, 31

}
∪
{
ξ7ξ12, ξ18ξ22, ξ17ξ23, ξ26ξ28, ξ23ξ29, ξ14ξ32, ξ16ξ30, ξ10ξ13, ξ1ξ6

}
.

Theorem 3.2. Let Gs(Rb) be a graph representing Ribociclib. Then the edge metric dimension of Gs(Rb)
is 4.

Proof. Consider the connected graphGs(Rb), which has an edge resolving setRe = {ξ2, ξ3, ξ9, ξ19},
as illustrated in Figure 4. The edge metric dimension of Gs(Rb) is 4. To demonstrate this, we
selected an edge resolving set with a cardinality of 4 and defined it as follows,

r(ξjξj+1 | Re) =
{
d(ξj , ξ2), d(ξj , ξ3), d(ξj , ξ9), d(ξj , ξ19)

}
.

Figure 4: Molecular graph of Ribociclib.
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To validate this statement, we present the following representations for further discussion,

r(ξjξj+1 | Re) =



(0, 2− j, j + 1, j + 11), if j = 1, 2

(j − 2, 0, j + 2, j + 10), if j = 3,(
j − 4

2
, j − 6

2
, j, 3(j)

)
, if j = 4,

(j − 3, j − 3, j − 2, j + 6), if j = 5,

(8− j, 9− j, 8− j, 16− j), if j = 6,

(j − 4, j − 3, 8− j, j + 2), if j = 7,

(j − 4, j − 3, 8− j, j), if j = 8,

(j − 4, j − 3, 9− j, j − 2), if j = 9,

(15− j, 16− j, 11− j, 17− j), if j = 10,

(15− j, 16− j, 13− j, 19− j), if j = 11,

(20− j, 21− j, 15− j, 18− j), if j = 13,

(22− j, 23− j, 17− j, 18− j), if j = 14,

(24− j, 24− j, 19− j, 18− j), if j = 15,

(26− j, 27− j, 21− j, 18− j), if j = 16,

(28− j, 29− j, 23− j, 18− j), if j = 17,

(30− j, 31− j, 25− j, 18− j), if j = 18,

(32− j, 33− j, 27− j, 19− j), if j = 19,

(34− j, 35− j, 29− j, 21− j), if j = 20,

(34− j, 35− j, 29− j, 23− j), if j = 21,

(35− j, 36− j, 30− j, 26− j), if j = 23,

(37− j, 38− j, 32− j, 28− j), if j = 24,

(38− j, 41− j, 35− j, 31− j), if j = 26,

(40− j, 41− j, 35− j, 33− j), if j = 29,

(40− j, 41− j, 35− j, 34− j), if j = 30,

(40− j, 41− j, 35− j, 36− j), if j = 31.

The representations for additional edges are as follows,

r(ξ7ξ12 | Re) = (3, 4, 2, 9), r(ξ1ξ6 | Re) = (1, 2, 3, 11),

r(ξ18ξ22 | Re) = (12, 13, 7, 1), r(ξ17ξ23 | Re) = (11, 12, 6, 2),

r(ξ26ξ28 | Re) = (14, 15, 9, 5), r(ξ23ξ29 | Re) = (12, 13, 7, 3),

r(ξ12ξ32 | Re) = (8, 9, 3, 5), r(ξ16ξ30 | Re) = (11, 11, 6, 3),

r(ξ10ξ13 | Re) = (6, 7, 1, 6), r(ξ24ξ26 | Re) = (13, 14, 8, 4).

It is evident from each edge’s unique representation with Re that Re is an edge resolving set of
Gs(Rb), which implies,

edim(Gs(Rb)) ≤ 4. (3)

Now, assume edim(Gs(Rb)) ≥ 4. On the contrary, suppose edim(Gs(Rb)) = 3. We consider,

Case 1: Let the path ξ6 → ξ7, ξ10 → ξ13 → ξ14, ξ17 → ξ18, ξ23 → ξ24 be a bridges. Here, ξ7ξ8
and ξ7ξ12 are edges from H1, while ξ14ξ15 and ξ14ξ32 are edges from H2, ξ18ξ19 and
ξ18ξ22 are edges from H3, showing uniform representation. The same representation
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will appear at the following edges if we choose an edge resolving set from R′
e ⊂ ξ(H1)

with a cardinality of three,

r(ξ7ξ8 | R′
e) = r(ξ7ξ12 | R′

e),

as with case 1, the resolving set fails to distinguish between these edges.
Case 2: The same representation will appear at the following edges if we choose an edge re-

solving set from R′
e ⊂ ξ(H2)with a cardinality of three,

r(ξ14ξ15 | R′
e) = r(ξ14ξ32 | R′

e),

and the same representation will appear at the following edges if we choose an edge
resolving set from R′

e ⊂ ξ(H3)with a cardinality of three,

r(ξ18ξ19 | R′
e) = r(ξ18ξ22 | R′

e).

Case 3: Even when considering an edge resolving set R′
e of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ7ξ8 | R′
e) = r(ξ7ξ12 | R′

e),

r(ξ14ξ15 | R′
e) = r(ξ14ξ32 | R′

e),

r(ξ18ξ19 | R′
e) = r(ξ18ξ22 | R′

e).

These equalities demonstrate that no edge resolving set of cardinality three can resolve all edges
in Gs(Rb), as shown in Figure 5. Therefore,

edim(Gs(Rb)) ≥ 4. (4)

Figure 5: Partitioning of the Ribociclib structure for the contrary theorem proof.

We conclude, based on inequalities (3) and (4), that,

edim(Gs(Rb)) = 4.

This completes the proof.
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A kinase inhibitor medication called tucacitabine is used to treat metastatic or incurable HER-2
positive breast cancer in conjunction with trastuzumab and capecitabine. Seattle Genetics created
it, and on April 17, 2020, the FDA gave it approval. For patients with metastatic breast cancer who
have not reacted well to previous chemotherapy regimens, tucatinib is a potentially effective new
medication,

V (Gs(Tb)) =
{
ξj | 1 ≤ j ≤ 36

}
,

E(Gs(Tb)) =
{
ξjξj+1 | j = 2, 3, 4, 6, . . . , 17, 19, 20, 21, 22, 24, 25, 27, . . . , 35

}
∪
{
ξ1ξ3, ξ3ξ6, ξ5ξ7, ξ9ξ18, ξ12ξ17, ξ16ξ19, ξ20ξ24, ξ23ξ25, ξ23ξ27, ξ28ξ36, ξ31ξ35

}
.

Theorem 3.3. Let Gs(Tb) be a graph representing Tucatinib. Then the edge metric dimension of Gs(Tb)
is 4.

Proof. Consider the connected graphGs(Tb), which has an edge resolving setRe = {ξ1, ξ2, ξ26, ξ30},
as illustrated in Figure 6. The edge metric dimension of Gs(Tb) is 4.

Figure 6: Molecular graph of Tucatinib.

To demonstrate this, we selected an edge resolving set with a cardinality of 4 and defined it as
follows,

r(ξjξj+1 | Re) =
{
d(ξj , ξ1), d(ξj , ξ2), d(ξj , ξ26), d(ξj , ξ30)

}
.
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To validate this statement, we present the following representations for further discussion,

r(ξjξj+1 | Re) =



(j − 1, j − 2, 6j, 8j), if j = 2,

(j − 2, j − 2, 4j, 4j + 4), if j = 3,

(j − 2, j − 2, 3j − 1, 4j − 1), if j = 4,(
j

2
,
j

2
, j + 4, 2(j) + 2

)
, if j = 6,

(j − 4, j − 4, j + 2, 2j − 1), if j = 7,

(j − 4, j − 4, 8, 12), if j = 8, 9, 10,

(j − 4, j − 4, 7, 11), if j = 11, 12, 13,(
j − 5, j − 5,

(
j

2

)
− 1,

(
j

2

)
+ 3

)
, if j = 14,((

j

2

)
+ 3,

(
j

3

)
+ 3,

(
j

3

)
,

(
j

3

)
+ 4

)
, if j = 15,((

j

4

)
+ 3,

(
j

4

)
+ 3,

(
j

4

)
+ 1,

(
j

4

)
+ 5

)
, if j = 16,

(j − 11, j − 11, j − 11, 9(3)− j), if j = 17,

(j − 10, j − 10, 3, j − 12), if j = 19,

(j − 10, j − 10, 3, j − 14), if j = 20,

(j − 10, j − 10, 3, j − 16), if j = 21,

(j − 10, j − 10, j − 20, j − 18), if j = 22,((
j

4

)
+ 5,

(
j

4

)
+ 5,

(
j

4

)
− 5,

(
j

4

)
− 1

)
, if j = 24,((

j

5

)
+ 7,

(
j

5

)
+ 7,

(
j

5

)
− 5,

(
j

5

))
, if j = 25,((

j

3

)
+ 5,

(
j

3

)
+ 5,

(
j

3

)
− 6,

(
j

3

)
− 7

)
, if j = 27,(

j − 13, j − 13,

(
j

7

)
,

(
j

7

)
− 3

)
, if j = 28,

(j − 13, j − 13, j − 24, 0), if j = 29, 30,

(j − 13, j − 13, j − 24, 1), if j = 31,

(j − 13, j − 13, j − 24, 3), if j = 32,

(j − 15, j − 15, j − 26, 3), if j = 33,((
j

2

)
,

(
j

2

)
, j − 28, 2

)
, if j = 34,((

j

5

)
+ 9,

(
j

5

)
+ 9, j − 30, 2

)
, if j = 35.

The representations for additional edges are as follows,

r(ξ1ξ3 | Re) = (0, 1, 12, 16), r(ξ3ξ6 | Re) = (1, 1, 11, 15),

r(ξ5ξ7 | Re) = (3, 3, 10, 14), r(ξ9ξ18 | Re) = (5, 5, 7, 11),

r(ξ12ξ17 | Re) = (7, 6, 6, 10), r(ξ16ξ19 | Re) = (8, 8, 4, 8),

r(ξ20ξ24 | Re) = (10, 10, 2, 7), r(ξ23ξ25 | Re) = (12, 12, 1, 4),

r(ξ23ξ27 | Re) = (13, 13, 2, 3), r(ξ28ξ36 | Re) = (15, 15, 4, 2),

r(ξ31ξ35 | Re) = (17, 17, 6, 1).

It is evident from each edge’s unique representation with Re that Re is an edge resolving set of
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Gs(Tb), which implies,

edim(Gs(Tb)) ≤ 4. (5)

Now, assume edim(Gs(Tb)) ≥ 4. On the contrary, suppose edim(Gs(Tb)) = 3. We consider,

Case 1: Let the path ξ7 → ξ8 → ξ9, ξ16 → ξ19 → ξ20, ξ23 → ξ27 → ξ28, ξ25 → ξ26, be a bridges.
Here, ξ1ξ3 and ξ2ξ3 are edges fromH1, while ξ20ξ21 and ξ20ξ24 are edges fromH2, ξ28ξ29
and ξ28ξ36 are edges from H3, showing uniform representation.
The same representation will appear at the following edges if we choose an edge re-
solving set from R′

e ⊂ ξ(H1)with a cardinality of three,

r(ξ1ξ3 | R′
e) = r(ξ2ξ3 | R′

e),

as with Case 1, the resolving set fails to distinguish between these edges.
Case 2: The same representation will appear at the following edges if we choose an edge re-

solving set from R′
e ⊂ ξ(H2)with a cardinality of three,

r(ξ20ξ21 | R′
e) = r(ξ20ξ24 | R′

e),

and the same representation will appear at the following edges if we choose an edge
resolving set from R′

e ⊂ ξ(H3)with a cardinality of three,

r(ξ28ξ29 | R′
e) = r(ξ28ξ36 | R′

e).

Case 3: Even when considering an edge resolving set R′
e of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ1ξ3 | R′
e) = r(ξ2ξ3 | R′

e),

r(ξ20ξ21 | R′
e) = r(ξ20ξ24 | R′

e),

r(ξ28ξ29 | R′
e) = r(ξ28ξ36 | R′

e).

These equalities demonstrate that no edge resolving set of cardinality three can resolve all edges
in Gs(Tb), as shown in Figure 7. Therefore,

edim(Gs(Tb)) ≥ 4. (6)

Figure 7: Partitioning of the Tucatinib structure for the contrary theorem proof.
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We conclude, based on inequalities (5) and (6), that,

edim(Gs(Tb)) = 4.

This completes the proof.

A PARP inhibitor is the medication used to target Olaparib. A protein called PARP aids in the
self-healing process of injured cells. Olaparib halts PARP’s operation. For their DNA to remain
healthy, some cancer cells depend on PARP. This includes cancer cells whose BRCA genes have
been altered. Thus, the cancer cells perish when olaparib prevents PARP from repairing DNA
damage.

V (Gs(Ob)) =
{
ξj | 1 ≤ j ≤ 32

}
,

E(Gs(Ob)) =
{
ξjξj+1 | j = 1, 2, 3, 5, 6, . . . , 10, 12, . . . , 16, 18, . . . , 24, 27, 29, 30, 31

}
∪
{
ξ1ξ11, ξ4ξ6, ξ4ξ10, ξ9ξ12, ξ13ξ32, ξ15ξ30, ξ16ξ18, ξ18ξ28, ξ21ξ27, ξ22ξ26, ξ23ξ25

}
.

Theorem 3.4. Let Gs(Ob) be a graph representing Olaparib. Then the edge metric dimension of Gs(Ob)
is 4.

Proof. Consider the connected graphGs(Ob), which has an edge resolving setRe = {ξ3, ξ6, ξ25, ξ27},
as illustrated in Figure 8. The edge metric dimension of Gs(Ob) is 4.

Figure 8: Molecular graph of Olaparib.

To demonstrate this, we selected an edge resolving set with a cardinality of 4 and defined it as
follows,

r(ξjξj+1 | Re) =
{
d(ξj , ξ3), d(ξj , ξ6), d(ξj , ξ25), d(ξj , ξ27)

}
.
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To validate this statement, we present the following representations for further discussion.

r (ξjξj+1 | Re) =



(
j, j +

4

2
,
28

2
+ j, j +

20

2

)
, if j = 1,

(0, 4− j, 7 (j) + 1, j + 9) , if j = 2,

(0, 4− j, 4 (j) + 2, j + 7) , if j = 3,

(7− j, 5− j, 5 (2) + j, j + 7) , if j = 5,

(8− j, 6− j, j + 8, 4 + j) , if j = 6,

(j − 4, j − 6, j + 6, 2 + j) , if j = 7,(
11− j, 10− j, 4 + j,

(
j

2

)
+ 5

)
, if j = 8,

(11− j, 11− j, j + 3, j − 1) , if j = 9,

(12− j, 12− j, 3 + j, 2 (j)− 11) , if j = 10,

(8 (2)− j, 8 (2)− j, j − 2, j − 6) , if j = 12,

(j − 8, 9 (2)− j, j − 4, j − 8) , if j = 13,(
j − 8,

(
j

2

)
− 1,

(
j

2

)
+ 1,

(
j

2

)
− 3

)
, if j = 14,(

j − 8, j − 8, j − 8,
j

5

)
, if j = 15,(

j − 8,

(
j

2

)
,

(
j

2

)
− 1,

(
j

2

)
− 5

)
, if j = 16,(

j

2
, j − 9,

(
j

2

)
− 4,

(
j

2

)
− 7

)
, if j = 18,

(j − 9, j − 9, j − 15, j − 17) , if j = 19,

(j − 9, j − 9, j − 17, j − 19) , if j = 20,(
j − 9, j − 9, j − 19,

(
j

7

)
− 2

)
, if j = 21,((

j

11

)
+ 11, j − 9,

(
j

11

)
− 1,

(
j

11

))
, if j = 22,(

j − 18

2
, j − 18

2
, j − 44

2
, j − 40

2

)
, if j = 23,(

j − 9,

(
j

4

)
+ 9, 0,

(
j

6

))
, if j = 24,((

j

3

)
+ 1, j − 17, j − 23, j − 9 (3)

)
, if j = 27,

(j − 7 (3) , j − 7 (3) , j − 20, j − 8 (3)) , if j = 29,

(j − 23, j − 22, j − 21, j − 5 (5)) , if j = 30,

(j − 25, j − 25, j − 21, j − 5 (5)) , if j = 31.

The representations for additional edges are as follows:

r(ξ1ξ11 | Re) = (2, 3, 14, 10), (ξ4ξ6 | Re) = (1, 0, 15, 10),

r(ξ4ξ10 | Re) = (1, 1, 13, 9), r(ξ9ξ12 | Re) = (3, 3, 11, 7),

r(ξ13ξ32 | Re) = (5, 5, 10, 6), r(ξ15ξ30 | Re) = (7, 7, 8, 4),

r(ξ16ξ18 | Re) = (8, 8, 6, 2), r(ξ18ξ28 | Re) = (9, 9, 6, 1),

r(ξ21ξ27 | Re) = (11, 11, 3, 0), r(ξ22ξ26 | Re) = (13, 13, 2, 2),

r(ξ23ξ25 | Re) = (14, 14, 0, 3).

It is evident from each edge’s unique representation with Re that Re is an edge resolving set of
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Gs(Ob), which implies,

edim(Gs(Ob)) ≤ 4. (7)

Now, assume edim(Gs(Ob)) ≥ 4. On the contrary, suppose edim(Gs(Ob)) = 3. We consider,

Case 1: Let the path ξ9 → ξ12 → ξ13, ξ15 → ξ16 → ξ18, ξ16 → ξ17, ξ21 → ξ22 → ξ23, ξ22 → ξ26
be a bridges. Here, ξ8ξ9 and ξ9ξ10 are edges fromH1, while ξ20ξ21 and ξ21ξ27 are edges
from H2, ξ23ξ24 and ξ23ξ25 are edges from H3, showing uniform representation. The
same representation will appear at the following edges if we choose an edge resolving
set from R′

e ⊂ ξ(H1)with a cardinality of three,

r(ξ8ξ9 | R′
e) = r(ξ9ξ10 | R′

e),

as with Case 1, the resolving set fails to distinguish between these edges.
Case 2: The same representation will appear at the following edges if we choose an edge re-

solving set from R′
e ⊂ ξ(H2)with a cardinality of three,

r(ξ20ξ21 | R′
e) = r(ξ21ξ27 | R′

e),

and the same representation will appear at the following edges if we choose an edge
resolving set from R′

e ⊂ ξ(H3)with a cardinality of three,

r(ξ23ξ24 | R′
e) = r(ξ23ξ25 | R′

e).

Case 3: Even when considering an edge resolving set R′
e of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ8ξ9 | R′
e) = r(ξ9ξ10 | R′

e),

r(ξ20ξ21 | R′
e) = r(ξ21ξ27 | R′

e),

r(ξ23ξ24 | R′
e) = r(ξ23ξ25 | R′

e).

These equalities demonstrate that no edge resolving set of cardinality three can resolve all edges
in Gs(Ob), as shown in Figure 9. Therefore,

edim(Gs(Ob)) ≥ 4. (8)

Figure 9: Partitioning of the Olaparib structure for the contrary theorem proof.
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We conclude, based on inequalities (7) and (8), that,

edim(Gs(Ob)) = 4.

This completes the proof.

Breast cancer that is bothHER2-negative andoestrogen receptor positive is treatedwith abelaci-
col. Bemaciclib is a member of the kinase inhibitor drug class. Abemaciclib functions by obstruct-
ing the aberrant protein that encourages the growth of cancer cells. This aids in halting or reducing
the spread of cancerous cells,

V (Gs(Ab)) =
{
ξj | 1 ≤ j ≤ 37

}
,

E(Gs(Ab)) =
{
ξjξj+1 | j = 1, 2, . . . , 7, 9, . . . , 14, 16, . . . , 20, 22, 24, 25, 26, 29, . . . , 32, 35, 36

}
∪
{
ξ3ξ8, ξ10ξ15, ξ13ξ16, ξ17ξ23, ξ20ξ22, ξ22ξ24, ξ24ξ29, ξ30ξ28, ξ26ξ28, ξ28ξ37, ξ32ξ34, ξ31ξ36

}
.

Theorem 3.5. LetGs(Ab) be a graph representing Abemaciclib. Then the edge metric dimension ofGs(Ab)
is 4.

Proof. Consider the connected graphGs(Ab), which has an edge resolving setRe = {ξ5, ξ12, ξ28, ξ34},
as illustrated in Figure 10. The edge metric dimension of Gs(Ab) is 4.

Figure 10: Molecular graph of Abemaciclib.

To demonstrate this, we selected an edge resolving set with a cardinality of 4 and defined it as
follows,

r(ξjξj+1 | Re) =
{
d(ξj , ξ5), d(ξj , ξ12), d(ξj , ξ28), d(ξj , ξ34)

}
.
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To validate this statement, we present the following representations for further discussion.

r (ξjξj+1 | Re) =



(4− j, 9− j, 18− j, 20− j) , if j = 1, 2, 3, 4,

(0, 9− j, 18− j, 20− j) , if j = 5,

(7− j, 10− j, 19− j, 21− j) , if j = 6,

(9− j, 12− j, 2j, 2j + 2) , if j = 7,

(j − 7, j − 7, 20− j, 2j − 3) , if j = 9,(
j − 7,

(
j

5

)
− 1, j,

(
j

2

)
+ 7

)
, if j = 10,

(j − 7, 0, j − 2, j) , if j = 11,(
j − 7, 0, j − 4,

(
j

2

)
+ 4

)
, if j = 12,(

j − 16

2
, j − 24

2
, j − 10

2
, j − 6

2

)
, if j = 13,((

j

2

)
− 3,

(
j

2

)
− 5,

(
j

2

)
+ 2,

(
j

2

)
+ 4

)
, if j = 14,

(j − 9, j − 14, 6, 8) , if j = 16, 17, 18,

(j − 9, j − 14, 5, 7) , if j = 19, 20,

(j − 15, j − 18, j − 18, j − 16) , if j = 22,((
j

2

)
− 1,

(
j

2

)
− 6,

(
j

12

)
,

(
j

12

)
+ 3

)
, if j = 24,((

j

5

)
+ 7,

(
j

5

)
+ 2,

(
j

5

)
− 4,

(
j

5

))
, if j = 25,((

j

2

)
,

(
j

2

)
− 5,

(
j

13

)
− 1,

(
j

13

)
+ 3

)
, if j = 26,

(j − 17, j − 22, 30− j, j − 26) , if j = 29,((
j

3

)
+ 3,

(
j

6

)
+ 3,

(
j

6

)
− 4,

(
j

6

)
− 3

)
, if j = 30,

(j − 17, j − 22, j − 29, 1) , if j = 31, 32,(
j − 10 (2) , j − 5 (5) ,

(
j

7

)
− 3, 3

)
, if j = 35,(

j − 7 (3) , j − 13 (2) ,

(
j

12

)
− 2, 3

)
, if j = 36.

The representations for additional edges are as follows,

r(ξ3ξ8 | Re) = (2, 6, 15, 19), r(ξ10ξ15 | Re) = (3, 2, 10, 12),

r(ξ13ξ16 | Re) = (6, 1, 7, 9), r(ξ17ξ23 | Re) = (8, 3, 5, 7),

r(ξ20ξ22 | Re) = (10, 5, 4, 6), r(ξ22ξ24 | Re) = (10, 5, 3, 5),

r(ξ24ξ29 | Re) = (11, 6, 2, 4), r(ξ30ξ28 | Re) = (13, 8, 0, 3),

r(ξ26ξ28 | Re) = (13, 8, 0, 4), r(ξ28ξ37 | Re) = (14, 9, 0, 4),

r(ξ32ξ34 | Re) = (15, 10, 3, 0), r(ξ31ξ36 | Re) = (14, 9, 2, 2).

It is evident from each edge’s unique representation with Re that Re is an edge resolving set of
Gs(Ab), which implies,

edim(Gs(Ab)) ≤ 4. (9)

Now, assume edim(Gs(Ab)) ≥ 4. On the contrary, suppose edim(Gs(Ab)) = 3. We consider,
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Case 1: Let the path ξ6 → ξ9 → ξ10, ξ13 → ξ16 → ξ17, ξ22 → ξ24, ξ31 → ξ32, ξ36 → ξ35 be a
bridges. Here, ξ5ξ6 and ξ6ξ7 are edges fromH1, while ξ10ξ11 and ξ10ξ15 are edges from
H2, ξ24ξ25 and ξ24ξ29 are edges from H3, showing uniform representation. The same
representation will appear at the following edges if we choose an edge resolving set
from R′

e ⊂ ξ(H1)with a cardinality of three,

r(ξ5ξ6 | R′
e) = r(ξ6ξ7 | R′

e),

as with Case 1, the resolving set fails to distinguish between these edges.
Case 2: The same representation will appear at the following edges if we choose an edge re-

solving set from R′
e ⊂ ξ(H2)with a cardinality of three,

r(ξ10ξ11 | R′
e) = r(ξ10ξ15 | R′

e),

and the same representation will appear at the following edges if we choose an edge
resolving set from R′

e ⊂ ξ(H3)with a cardinality of three,

r(ξ24ξ25 | R′
e) = r(ξ24ξ29 | R′

e).

Case 3: Even when considering an edge resolving set R′
e of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ5ξ6 | R′
e) = r(ξ6ξ7 | R′

e),

r(ξ10ξ11 | R′
e) = r(ξ10ξ11 | R′

e),

r(ξ24ξ25 | R′
e) = r(ξ24ξ29 | R′

e).

These equalities demonstrate that no edge resolving set of cardinality three can resolve all edges
in Gs(Ab), as shown in Figure 11. Therefore,

edim(Gs(Ab)) ≥ 4. (10)

Figure 11: Partitioning of the Abemaciclib structure for the contrary theorem proof.
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We conclude, based on inequalities (9) and (10), that,

edim(Gs(Ab)) = 4.

This completes the proof.

3.2 Vertex metric dimensions of resolving set for a molecular graphs

Theorem 3.6. Let Gs(Te) be a graph of Toremifene. Then, ξdim(Gs(Te)) = 4.

Proof. Consider the connected graph Gs(Te), which has an vertex resolving set,

Rξ =
{
ξ7, ξ13, ξ19, ξ28

}
,

as illustrated in Figure 2. The vertex metric dimension of Gs(Te) is 4.

To demonstrate this, we selected an vertex resolving set with a cardinality of 4 and defined it as
follows,

r(ξj | Rξ) =
{
d(ξ7), d(ξ13), d(ξ19), d(ξ28)

}
.

To validate this statement, we present the following representations in Table 1 for further discus-
sion,

Table 1: Resolving set of the molecular graph of Toremifene with unique vertex representations.

j r (ξj |Rξ) =
{
d (ξ7) , d (ξ13) , d (ξ19) , d (ξ28)

}
j r (ξj |Rξ) =

{
d (ξ7) , d (ξ13) , d (ξ19) , d (ξ28)

}
1, 2, 3, 4 (7− j, 7− j, 7− j, 14− j) 19 (j − 13, j − 15, j − 19, j − 12)

5

(
14

2
− j,

18

2
− j,

18

2
− j,

32

2
− j

)
20

((
j

2

)
− 3,

(
j

2

)
− 5, j − 19, j − 14

)
6, 7 (7− j, j − 1, j − 1, j + 6) 21

((
j

3

)
+ 1,

(
j

3

)
− 1,

(
j

3

)
− 5,

(
j

3

)
− 2

)
8

(
j − 7,

(
j

2

)
+ 3,

(
j

4

)
+ 5,

(
j

2

)
+ 6

)
22

(
j − 30

2
, j − 34

2
, j − 38

2
, j − 32

2

)
9

(
j − 7,

(
j

3

)
+ 3, j − 3,

(
j

3

)
+ 10

)
23

(
j − 34

2
, j − 38

2
, j − 42

2
, j − 32

2

)
10

(
j − 14

2
, j − 10

2
, j − 10

2
, j +

4

2

)
24

((
j

4

)
+ 3,

(
j

4

)
+ 1,

(
j

4

)
− 3,

(
j

4

)
− 2

)
11 (j − 7, j − 9, j − 9, j − 2) 25

((
j

5

)
+ 5,

(
j

5

)
+ 3,

(
j

5

)
− 1,

(
j

5

)
− 2

)
12

(
j − 14

2
, j − 22

2
, j − 18

2
, j − 4

2

)
26

((
j

2

)
− 2,

(
j

2

)
− 4,

(
j

2

)
− 8,

(
j

13

))
13, 14, 15 (j − 7, j − 13, j − 9, j − 2) 27

((
j

3

)
+ 3,

(
j

3

)
+ 1,

(
j

3

)
− 3, 1

)
16

((
j

2

)
− 1,

(
j

4

)
− 1,

(
j

4

)
+ 1, j − 4

)
28

((
j

4

)
+ 6,

(
j

4

)
+ 4,

(
j

4

)
− 5, 0

)
17 (j − 11, j − 15, j − 13, j − 6) 29 (j − 16, j − 18, j − 22, j − 27)

18 (j − 13, j − 15, j − 18, j − 10)
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It is evident from each vertices unique representation with Rξ that Rξ is an vertex resolving set of
Gs(Te), which implies,

ξdim(Gs(Te)) ≤ 4. (11)

Now, assume ξdim(Gs(Te)) ≥ 4. On the contrary, suppose ξdim(Gs(Te)) = 3. We consider:

Case 1: Let the path ξ1 → ξ2 → ξ3 → ξ4 → ξ5, ξ12 → ξ11 → ξ18, ξ21 → ξ24, be a bridges.
Here, ξ6 and ξ10 are vertices fromH1, while ξ13 and ξ17 are vertices fromH2, ξ19 and ξ23
are vertices from H3, showing uniform representation. The same representation will
appear at the following vertices if we choose an vertex resolving set from R′

ξ ⊂ ξ(H1)
with a cardinality of three,

r(ξ6 | R′
ξ) = r(ξ10 | R′

ξ).

It is impossible to resolve all the vertices.
Case 2: The same representation will appear at the following vertices if we choose an vertex

resolving set from R′
ξ ⊂ ξ(H2)with a cardinality of three,

r(ξ13 | R′
ξ) = r(ξ17 | R′

ξ),

and the same representation will appear at the following vertices if we choose an vertex
resolving set from R′

ξ ⊂ ξ(H3)with a cardinality of three,

r(ξ19 | R′
ξ) = r(ξ23 | R′

ξ),

Case 3: Even when considering an edge resolving set R′
ξ of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ6 | R′
ξ) = r(ξ10 | R′

ξ),

r(ξ13 | R′
ξ) = r(ξ17 | R′

ξ),

r(ξ19 | R′
ξ) = r(ξ23 | R′

ξ).

These equalities demonstrate that no vertex resolving set of cardinality three can resolve all vertices
in Gs(Te), as shown in Figure 3. Therefore,

ξdim(Gs(Te)) ≥ 4. (12)

We conclude by inequalities (11) and (12),

ξdim(Gs(Te)) = 4.

This completes the proof.

Theorem 3.7. Let Gs(Rb) be a graph of Ribociclib . Then ξdim(Gs(Rb)) = 4.

Proof. Consider the connected graphGs(Rb), which has an vertex resolving setRξ = {ξ2, ξ11, ξ20, ξ27},
as illustrated in Figure 4. The vertex metric dimension of Gs(Rb) is 4.

To demonstrate this, we selected an vertex resolving set with a cardinality of 4 and defined it as
follows,

r(ξj | Rξ) =
{
d(ξ2), d(ξ11), d(ξ20), d(ξ27)

}
.
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To validate this statement, we present the following representations in Table 2 for further discus-
sion,

Table 2: Resolving set of the molecular graph of Ribociclib with unique vertex representations.

j r (ξj |Rξ) =
{
d (ξ2) , d (ξ11) , d (ξ20) , d (ξ27)

}
j r (ξj |Rξ) =

{
d (ξ2) , d (ξ11) , d (ξ20) , d (ξ27)

}
1 (j, j + 3, j + 12, j + 13) 17

(
j − 12

2
, j − 22

2
, j − 28

2
, j − 26

2

)
2 (0, 7− j, 16− j, 17− j) 18 (j − 6, j − 11, j − 16, j − 13)

3

(
8

2
− j,

18

2
− j,

36

2
− j,

38

2
− j

)
19 (j − 6, j − 11, j − 18, j − 13)

4

(
j − 4

2
, j + 1, j (2) + 2, j (3) + 3

)
20

((
j

2

)
+ 4,

(
j

2

)
− 1, 0, j − 13

)
5, 6 (8− j, 9− j, 18− j, 19− j) 21

((
j

3

)
+ 4,

(
j

3

)
+ 2,

(
j

3

)
− 6,

(
j

3

))
7 (10− j, 9− j, 18− j, 19− j) 22

(
j − 9,

(
j

2

)
− 3,

(
j

2

)
− 9,

(
j

2

)
− 5

)
8 (12− j, j − 5, 18− j, 19− j) 23 (j − 11, j − 16, j − 19, j − 20)

9 (14− j, j − 7, 18− j, 19− j) 24, 25 (j − 11, j − 16, j − 19, j − 22)

10 (16− j, j − 9, 18− j, 19− j) 26 (j − 12, j − 17, j − 20, j − 25)

11 (16− j, j − 11, j − 2, 21− j) 27

((
j

3

)
+ 6,

(
j

3

)
+ 1,

(
j

3

)
− 2, 0

)
12

(
16− j, j − 11,

(
j

2

)
+ 4,

(
j

2

)
+ 5

)
28

((
j

4

)
+ 8,

(
j

4

)
+ 3,

(
j

4

)
,

(
j

4

)
− 5

)
13 (20− j, j − 11, 20− j, j − 5) 29 (j − 17, j − 22, j − 24, j − 25)

14

((
j

2

)
+ 1,

(
j

2

)
− 4,

(
j

2

)
− 1,

(
j

2

))
30 (j − 19, j − 24, j − 25, j − 25)

15

(
j − 12

2
, j − 22

2
, j − 20

2
, j − 18

2

)
31 (j − 21, j − 26, j − 25, j − 25)

16

(
j − 12

2
, j − 22

2
, j − 24

2
, j − 22

2

)
32 (j − 23, j − 28, j − 25, j − 25)

It is evident from each vertices unique representation with Rξ that Rξ is an vertex resolving
set of Gs(Rb), which implies,

ξdim(Gs(Rb)) ≤ 4. (13)

Now, assume ξdim(Gs(Rb)) ≥ 4. On the contrary, suppose ξdim(Gs(Rb)) = 3. We consider:

Case 1: Let the path ξ6 → ξ7, ξ10 → ξ13 → ξ14, ξ17 → ξ18, ξ23 → ξ24, be a bridges. Here,
ξ8 and ξ12 are vertices from H1, while ξ15 and ξ32 are vertices from H2, ξ19 and ξ22
are vertices from H3, showing uniform representation. The same representation will
appear at the following vertices if we choose an vertex resolving set from R′

ξ ⊂ ξ(H1)
with a cardinality of three,

r(ξ8 | R′
ξ) = r(ξ12 | R′

ξ).
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It is impossible to resolve all the vertices.
Case 2: The same representation will appear at the following vertices if we choose an vertex

resolving set from R′
ξ ⊂ ξ(H2)with a cardinality of three,

r(ξ15 | R′
ξ) = r(ξ32 | R′

ξ),

and the same representation will appear at the following vertices if we choose an vertex
resolving set from R′

ξ ⊂ ξ(H3)with a cardinality of three,

r(ξ19 | R′
ξ) = r(ξ22 | R′

ξ).

Case 3: Even when considering an edge resolving set R′
ξ of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ8 | R′
ξ) = r(ξ12 | R′

ξ),

r(ξ15 | R′
ξ) = r(ξ32 | R′

ξ),

r(ξ19 | R′
ξ) = r(ξ22 | R′

ξ).

These equalities demonstrate that no vertex resolving set of cardinality three can resolve all vertices
in Gs(Rb), as shown in Figure 5. Therefore,

ξdim(Gs(Rb)) ≥ 4. (14)

We conclude by inequalities (13) and (14),

ξdim(Gs(Rb)) = 4.

This completes the proof.

Theorem 3.8. Let Gs(Tb) be a graph of Tucatinib. Then, ξdim(Gs(Tb)) = 3.

Proof. Consider the connected graphGs(Tb), which has an vertex resolving setRξ = {ξ1, ξ26, ξ33},
as illustrated in Figure 6. The vertex metric dimension of Gs(Tb) is 3.

To demonstrate this, we selected an vertex resolving set with a cardinality of 3 and defined it as
follows,

r(ξj | Rξ) =
{
d(ξ1), d(ξ26), d(ξ33)

}
.

To validate this statement, we present the following representations in Table 3 for further discus-
sion.
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Table 3: Resolving set of the molecular graph of Tucatinib with unique vertex representations.

j r (ξj |Rξ) =
{
d (ξ1) , d (ξ26) , d (ξ33)

}
j r (ξj |Rξ) =

{
d (ξ1) , d (ξ26) , d (ξ33)

}
1 (0, j + 2, j + 8) 20

((
j

2

)
,

(
j

2

)
− 7,

(
j

2

)
− 1

)
2 (j, 6j + j, 7 + j) 21 (j − 10, j − 17, j − 13)

3 (j − 2, 4j, 6j) 22

(
j − 10,

(
j

22

)
+ 2,

(
j

2

)
− 4

)
4 (j − 2, 3j, 4j + 2) 23 (j − 10, j − 21, j − 14)

5 (j − 2, j + 6, 3j + 2) 24

((
j

2

)
− 1,

(
j

12

)
,

(
j

2

)
− 4

)
6 (j − 4, j + 5, j + 11) 25

((
j

5

)
+ 7,

(
j

5

)
− 4,

(
j

5

)
+ 2

)
7 (j − 4, j + 3, j + 9) 26

((
j

13

)
, 0,

(
j

13

)
+ 6

)
8 (j − 4, j + 1j + 7) 27

(
j − 13,

(
j

9

)
,

(
j

9

)
+ 2

)
9, 10 (j − 4, j − 1, j + 5) 28

(
j − 13,

(
j

4

)
− 3,

(
j

4

)
− 3

)
11 (j − 4, j − 3, 3 + j) 29

(
j − 26

2
, j − 48

2
, j − 50

2

)
12, 13 (j − 4, j − 5, 1 + j) 30

(
j − 26

2
, j − 48

2
, j − 54

2

)
14

((
j

2

)
+ 3,

(
j

2

)
,

(
j

2

)
+ 6

)
31

(
j − 26

2
, j − 48

2
, j − 58

2

)
15

((
j

3

)
+ 4,

(
j

3

)
+ 1,

(
j

3

)
+ 7

)
32

(
j − 26

2
, j − 48

2
, j − 62

2

)
16 (j − 8, j − 11, j − 5) 33 (j − 14, j − 25, 0)

17

(
j − 20

2
, j − 22

2
, j − 10

2

)
34 (j − 16, j − 27, j − 33)

18

(
j − 24

2
, j − 22

2
, j − 10

2

)
35 (j − 18, j − 29, j − 33)

19 (j − 10, j − 15, j − 9) 36 (j − 20, j − 31, j − 33)

It is evident from each vertices unique representation with Rξ that Rξ is an vertex resolving
set of Gs(Tb), which implies,

ξdim(Gs(Tb) ≤ 3. (15)

Now, assume ξdim(Gs(Tb)) ≥ 3. On contrary, suppose ξdim(Gs(Tb)) = 2. We consider,

Case 1: Let the path ξ7 → ξ8 → ξ9, ξ16 → ξ19 → ξ20, ξ23 → ξ27 → ξ28, ξ25 → ξ26, be a bridges.
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Here, ξ4 and ξ6 are vertices fromH1, while ξ21 and ξ24 are vertices fromH2, ξ32 and ξ33
are vertices from H3, showing uniform representation. The same representation will
appear at the following vertices if we choose an vertex resolving set from R′

ξ ⊂ ξ(H1)
with a cardinality of two,

r(ξ4 | R′
ξ) = r(ξ6 | R′

ξ).

It is impossible to resolve all the vertices.
Case 2: The same representation will appear at the following vertices if we choose an vertex

resolving set from R′
ξ ⊂ ξ(H2)with a cardinality of two,

r(ξ21 | R′
ξ) = r(ξ24 | R′

ξ),

and the same representation will appear at the following vertices if we choose an vertex
resolving set from R′

ξ ⊂ ξ(H3)with a cardinality of two,

r(ξ32 | R′
ξ) = r(ξ33 | R′

ξ).

Case 3: Even when considering an edge resolving set R′
ξ of cardinality two drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), The problem persists,

r(ξ4 | R′
ξ) = r(ξ6 | R′

ξ),

r(ξ21 | R′
ξ) = r(ξ24 | R′

ξ),

r(ξ32 | R′
ξ) = r(ξ33 | R′

ξ).

These equalities demonstrate that no vertex resolving set of cardinality two can resolve all vertices
in Gs(Tb), as shown in Figure 7. Therefore,

ξdim(Gs(Tb)) ≥ 3. (16)

We conclude by inequalities (15) and (16),

ξdim(Gs(Tb)) = 3.

This completes the proof.

Theorem 3.9. Let Gs(Ob) be a graph of Olaparib. Then ξdim(Gs(Ob)) = 3.

Proof. Consider the connected graphGs(Ob), which has an vertex resolving setRξ = {ξ7, ξ19, ξ24},
as illustrated in Figure 8. The vertex metric dimension of Gs(Ob) is 3.

To demonstrate this, we selected an vertex resolving set with a cardinality of 3 and defined it as
follows,

r(ξj | Rξ) =
{
d(ξ7), d(ξ19), d(ξ24)

}
.

To validate this statement, we present the following representations in Table 4 for further discus-
sion.
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Table 4: Resolving set of the molecular graph of Olaparib with unique vertex representations.

j r (ξj |Rξ) =
{
d (ξ7) , d (ξ19) , d (ξ24)

}
j r (ξj |Rξ) =

{
d (ξ7) , d (ξ19) , d (ξ24)

}
1 (6− j, 3 (3) + j, 7 (2) + j) 19 (j − 10, 0, j − 14)

2 (2 (j) , 4 (j) + 3, 8 (j)) 20

((
j

2

)
,

(
j

4

)
− 4,

(
j

4

)
− 1

)
3 (j, 7 + j, 5 (j)) 21

((
j

3

)
+ 4,

(
j

7

)
− 1,

(
j

7

))
4 (j − 2, j + 5, 12 + j) 22 (j − 10, j − 19, j − 20)

5 (7− j, j + 6, 3 (j) + 1) 23 (j − 10, j − 19, j − 22)

6

(
j − 10

2
, j +

8

2
, j +

18

2

)
24

((
j

3

)
+ 5,

(
j

4

)
− 1, 0

)
7

(
j − 14

2
, j +

4

2
, 2 (j)

)
25 (j − 11, j − 20, j − 24)

8 (j − 7, 16− j, j + 5) 26

((
j

2

)
,

(
j

2

)
− 9,

(
j

2

)
− 10

)
9, 10, 11 (j − 7, j − 2, j + 3) 27

((
j

3

)
+ 1,

(
j

3

)
− 6,

(
j

3

)
− 5

)
12

((
j

4

)
,

(
j

2

)
,

(
j

4

)
− 2

)
28

((
j

4

)
+ 2,

(
j

4

)
− 5,

(
j

4

)
− 2

)
13

(
j − 18

2
, j − 16

2
, j − 6

2

)
29 (j − 7 (3) , j − 6 (4) , j − 19)

14 (j − 9, j − 10, j − 5) 30 (j − 9 (3) , j − 26, j − 21)

15 (j − 9, j − 12, j − 7) 31 (j − 25, j − 26, j − 21)

16, 17 (j − 9, j − 14, j − 9) 32 (j − 27, j − 26, j − 21)

18 (j − 10, j − 17, j − 12)

It is evident from each vertices unique representation with Rξ that Rξ is an vertex resolving
set of Gs(Ob), which implies,

ξdim(Gs(Ob)) ≤ 3. (17)

Now, assume ξdim(Gs(Ob)) ≥ 3. On contrary, suppose ξdim(Gs(Ob)) = 2. We consider,

Case 1: Let the path ξ9 → ξ12 → ξ13, ξ15 → ξ16 → ξ18, ξ16 → ξ17, ξ21 → ξ22 → ξ23,
ξ22 → ξ26, be a bridges. Here, ξ5 and ξ7 are vertices from H1, while ξ17 and ξ18 are
vertices from H2, ξ24 and ξ25 are vertices from H3, showing uniform representation.
The same representation will appear at the following vertices if we choose an vertex
resolving set from R′

ξ ⊂ ξ(H1)with a cardinality of two,

r(ξ5 | R′
ξ) = r(ξ7 | R′

ξ),
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it is impossible to resolve all the vertices.
Case 2: The same representation will appear at the following vertices if we choose an vertex

resolving set from R′
ξ ⊂ ξ(H2)with a cardinality of two,

r(ξ17 | R′
ξ) = r(ξ18 | R′

ξ),

and the same representation will appear at the following vertices if we choose an vertex
resolving set from R′

ξ ⊂ ξ(H3)with a cardinality of two,

r(ξ24 | R′
ξ) = r(ξ25 | R′

ξ).

Case 3: Even when considering an edge resolving set R′
ξ of cardinality two drawn from the

unionξ(H1) ∪ ξ(H2) ∪ ξ(H3), the problem persists,

r(ξ5 | R′
ξ) = r(ξ7 | R′

ξ),

r(ξ17 | R′
ξ) = r(ξ18 | R′

ξ),

r(ξ24 | R′
ξ) = r(ξ25 | R′

ξ).

These equalities demonstrate that no vertex resolving set of cardinality two can resolve all vertices
in Gs(Ob), as shown in Figure 9. Therefore,

ξdim(Gs(Ob)) ≥ 3. (18)

We conclude by inequalities (15) and (18),

ξdim(Gs(Ob) = 3.

This completes the proof.

Theorem 3.10. Let Gs(Ab) be a graph of Abemacicilb. Then, ξdim(Gs(Ab)) = 3.

Proof. Consider the connected graphGs(Ab), which has an vertex resolving setRξ = {ξ5, ξ14, ξ33},
as illustrated in Figure 10. The vertex metric dimension of Gs(Ab) is 3.

To demonstrate this, we selected an vertex resolving set with a cardinality of 3 and defined it as
follows,

r(ξj | Rξ) =
{
d(ξ5), d(ξ14), d(ξ33)

}
.

To validate this statement, we present the following representations in Table 5 for further discus-
sion.
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Table 5: Resolving set of the molecular graph of Abemaciclib with unique vertex representations.

j r (ξj |Rξ) = {d (ξ5) , d (ξ14) , d (ξ33)} j r (ξj |Rξ) = {d (ξ5) , d (ξ14) , d (ξ33)}

1, 2, 3, 4, 5 (5− j, 10− j, 21− j) 22

(
j − 12,

(
j

2

)
− 6,

(
j

2

)
− 5

)
6 (j − 5, 10− j, 21− j) 23 (j − 12, 4, 7)

7 (j − 5, j − 2, 2j + 2) 24

((
j

2

)
− 1,

(
j

2

)
− 6,

(
j

2

)
− 7

)
8 (j − 5, j − 2, 2j + 1) 25

((
j

5

)
+ 7,

(
j

5

)
+ 2,

(
j

5

)
+ 1

)
9 (j − 7, j − 6, j + 5) 26

((
j

2

)
,

(
j

2

)
− 5,

(
j

2

)
− 8

)
10 (j − 7, j − 8, j + 3) 27

((
j

3

)
+ 5,

(
j

3

)
,

(
j

3

)
− 3

)
11 (j − 7, j − 8, j + 1) 28

((
j

2

)
,

(
j

4

)
+ 2,

(
j

7

))
12

(
j − 14

2
, j − 20

2
, j − 2

2

)
29 (j − 17, j − 22, j − 25)

13

(
j − 14

2
, j − 24

2
, j − 6

2

)
30 (j − 17, j − 22, j − 27)

14

(
j − 18

2
, j − 28

2
, j − 6

2

)
31 (j − 17, j − 22, j − 29)

15 (j − 11, 16− j, j − 6) 32 (j − 17, j − 22, j − 31)

16 (j − 9, j − 12, j − 7) 33 (j − 17, j − 22, j − 33)

17 (j − 9, j − 13, j − 9) 34 (j − 18, j − 23, j − 32)

18 (j − 9, j − 14, j − 9) 35 (j − 19, j − 24, j − 31)

19 (j − 9, j − 15, j − 11) 36 (j − 21, j − 26, j − 33)

20 (j − 9, j − 14, j − 13) 37 (j − 21, j − 27, j − 33)

21

((
j

3

)
+ 5,

(
j

3

)
,

(
j

3

)
− 1

)

It is evident from each vertices unique representation with Rξ that Rξ is an vertex resolving
set of Gs(Ab), which implies,

ξdim(Gs(Ab)) ≤ 3. (19)

Now, assume ξdim(Gs(Ab)) ≥ 3. On contrary, suppose ξdim(Gs(Ab)) = 2. We consider,

Case 1: Let the path ξ7 → ξ8 → ξ9, ξ16 → ξ19 → ξ20, ξ23 → ξ27 → ξ28, ξ25 → ξ26, be a bridges.
Here, ξ4 and ξ6 are vertices fromH1, while ξ21 and ξ224 are vertices fromH2, ξ32 and ξ33
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are vertices from H3, showing uniform representation. The same representation will
appear at the following vertices if we choose an vertex resolving set from R′

ξ ⊂ ξ(H1)
with a cardinality of two,

r(ξ4 | R′
ξ) = r(ξ6 | R′

ξ).

It is impossible to resolve all the vertices.
Case 2: The same representation will appear at the following vertices if we choose an vertex

resolving set from R′
ξ ⊂ ξ(H2)with a cardinality of two,

r(ξ21 | R′
ξ) = r(ξ24 | R′

ξ),

and the same representation will appear at the following vertices if we choose an vertex
resolving set from R′

ξ ⊂ ξ(H3)with a cardinality of two,

r(ξ32 | R′
ξ) = r(ξ33 | R′

ξ).

Case 3: Even when considering an edge resolving set R′
ξ of cardinality three drawn from the

union ξ(H1) ∪ ξ(H2) ∪ ξ(H3), the proplem persists,

r(ξ4 | R′
ξ) = r(ξ6 | R′

ξ),

r(ξ21 | R′
ξ) = r(ξ24 | R′

ξ),

r(ξ32 | R′
ξ) = r(ξ33 | R′

ξ).

These equalities demonstrate that no vertex resolving set of cardinality two can resolve all vertices
in Gs(Ab), as shown in Figure 11. Therefore,

ξdim(Gs(Ab)) ≥ 3. (20)

We conclude by inequalities (19) and (20),

ξdim(Gs(Ab)) = 3.

This completes the proof.

4 Conclusion

This study addresses the structures of different cancer drugs and computes their vertex and
edge metric dimensions, resolving a collection of molecular graphs of drugs used in breast cancer
therapy. This paper provided a brief overview of some molecular structures using the metric of
vertices and edges in chemical graph theory. Key nodes, such as proteins, genes, or molecular
targets, may be discovered in the biological network of breast cancer by applying the metric di-
mension idea. The structure’s pivotal points have a major impact on medication resistance or the
advancement of cancer. By concentrating on these nodes, medicines that are more individualized
and effective may be developed. Moreover, Table 6 provides a summary of the key findings.

Table 6: Summary of the result.

Drugs Vertex Metric Dimension Edge Metric Dimension
Gs(Te) 4 3
Gs(Rb) 4 3
Gs(Tb) 3 3
Gs(Ob) 3 3
Gs(Ab) 3 3
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Open Problem

Problem 1: Compute the mixed metric dimension for the molecular graph of breast cancer
drugs.

Problem 2: Compute the fault-tolerantmetric dimension for themolecular graph of breast can-
cer drugs.
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